

Ordering code

Axial piston unit Swashplate design, variable Nominal pressure 280 bar, peak pressure 350 bar Operational mode Pump, open loop circuit O Size O
Operational modePump, open loop circuitSizeDisplacement $V_{g max}$ (cm ³)284571*100140Sontrol devices284571100140Pressure controlDG \bigcirc \bigcirc \bigcirc \bigcirc DGPressure controlDR \bigcirc \bigcirc \bigcirc \bigcirc DRMovable pressure controlDRT1 \bigcirc \bigcirc \bigcirc \bigcirc DRT1for when requiredDRT2 \bigcirc \bigcirc \bigcirc \bigcirc DRT2Pressure and flow controlDFR \bigcirc <
Pump, open loop circuitOSize284571*100140Control devices2845711001402-pos. adjustment, direct controlDG \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare Pressure controlDR \blacksquare
Size
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Control devices 28 45 71 100 140 2-pos. adjustment, direct control DG DG Image: Control devices Im
2-pos. adjustment, direct control DG OG OG DG Page 2 Pressure control DR OR O O DR Page 2 DR G O O O DR Page 2 Novable pressure control DRT 1 O O O DRT1 Movable pressure control DRT 2 O O O DRT2 Page 2 for when required DRT 2 O O O DRT2 Page 2 i = 18,2 i = 12,4 i = 12,4 Page 2 Page 2 Page 2 Page 2
DR Image: Control DR Image: Control DR Image: Control DR DR Page: Control Page: Co
DR G Image Image<
Remote controlMovable pressure controlDRT1OOODRT1for when requiredDRT2OOODRT2Page 2 $i = 18,2$ $i = 12,4$ $i = 12,4$ Page 2Page 2
Movable pressure controlDRT1OOODRTPage 2for when requiredDRT2OOODRTPage 2 $i = 18,2$ $i = 12,4$ $i = 12,4$ Page 2Page 2Pressure and flow controlDFROODFRPage 2
for when required $\begin{array}{c c c c c c c c c c c c c c c c c c c $
i = 18,2 $i = 12,4$ Pressure and flow control DFR DFR DFR $Page 2$
Pressure and flow control DFR DFR Page 2
DFR 1 • • • • • DFR1 Page 2
X port closed
Pressure, flow and power control DFLR • • • • DFLR Page 3
Pressure, flow and summ. power control DFSR
Flow control, pilot pressure-dependent FHD Image: Control and the second secon
with pressure control
Electronic flow control FE1 Image: Control flow control FE1 Image: Control flow
Electronic pressure and flow control DFE1 Image: Control information of the second secon
Series
3
Direction of rotation
Viewed on drive shaft <u>clockwis</u>
anti-clockwise

				A1()V (C		1	31					
Axial piston pump														
Operational mode														
Size						•								
Adjustment and co	ntrol devices						-							
Series								1						
Direction of rotation	n													
Seals														
NBR (Nitrile rubber	to DIN ISO 1629)								Р					
FPM (Fluoro rubbe	,								V					
Shaft end			28	45	71	10	0 1	40						
Splined shaft SAE			7/8"	1"	1 1/4"	1 1/2	2" 1	3/4"	S			I		
Splined shaft SAE	(higher through drive t	orque)	7/8"	1"	1 1/4"	-		-	R	1				
Splined shaft SAE	(not suitable for throug	gh drive)	-	7/8"	-	1 1/-	4"	-	U	1				
Nounting flange			28	45	71	10	0 1	40						
SAE 2-hole)	-	С				_'	
SAE 4-hole				-	-	-		•	D					
Port for service line	es					28	45	71	100	140				
Pressure port B	SAE at rear, fixi	ng thread U	NC								61			-
Suction port S	}] ¦		
Pressure port B	<pre>SAE on opposite }</pre>										62] ¦_		
Suction port S	^J fixing thread UN		<u> </u>										ort pos nd 11 d	
Pressure port B Suction port S	<pre>SAE at rear, me</pre>	tric fixing th	read								11	fo	r versi ithout	
Pressure port B	} SAE on opposite	e sides.									12		rough	drive
Suction port S	metric fixing three													
Through drive														
Without through dri	ive										N00	┯┵		
•	(port pos. 62, 12) for r	nounting AK	M or Z	RP										
Mounting flange	Shaft/coupling	For mou	nting:								_	_		
82-2(SAE A)	16-4(SAE A)	G2, GC2	2/GC3-	1X							K01			
82-2(SAE A)	19-4(SAE A-B)	A10VSO	18 (sh	aft S)		\bullet		•			K52	_		
101-2(SAE B)	22-4(SAE B)	A10VO 2	28 (sha	ft S), G	33	\bullet					K02	_		
101-2(SAE B)	22-4(SAE B)	G4				ullet					K68	_		
101-2(SAE B)	25-4(SAE B-B)	A10VO 4	15 (sha	ft S), G	GC4-1X	-	•			0	K04			
101-2(SAE B)	32-4(SAE C)	GC5-1X				-	•			0	K06			
127-2(SAE C)	32-4(SAE C)	A10VO 7	71 (sha	ft S)		-	-				K07			
127-2(SAE C)	38-4(SAE C-C)	A10VO 10			C6-1X	-	-	-		٠	K24			
152-4(SAE D)	44-4(SAE D)	A10VO 1	140 (sh	aft S)		-	-	-	-		K17			

Multiple pumps

- 1. If a second Brueninghaus Hydromatik pump is to be factory-mounted, then both ordering codes are to be specified, combined with a "+" . Ordering code 1st pump + Ordering code 2nd pump Ordering example: A10VO 100DR/31R-PSC62K07 + A10VO 71DR/31R-PSC62N00
- 2. If a gear pump is to be factory-mounted please contact us (RE 90139 in preparation)

Fluid

Prior to project design, please see our data sheets RE 90220 (mineral oil) and RE 90221 (ecologically acceptable fluids) for detailed information on fluids and application conditions.

When using ecologically acceptable fluids attention must be paid to possible limitations of the technical data. If necessary please contact us.

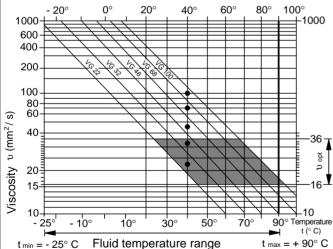
Operating viscosity range

For optimum efficiency and service life we recommend that the operating viscosity (at operating temperature) be selected in the range

 v_{oot} = opt. operating viscosity 16...36 mm²/s

referred to tank temperature (open loop circuit).

Limits of viscosity range


The following values are valid for extreme operating conditions: $v_{min} = 10 \text{ mm}^2/\text{s}$

- for short periods at max. leakage oil temperature of 90° C.
- $v_{max} = 1000 \text{ mm}^2/\text{s}$
 - for short periods upon cold start.

Temperature range (see selection diagram)

 $t_{min} = -25^{\circ} C$ $t_{max} = +90^{\circ} C$

Selection diagram

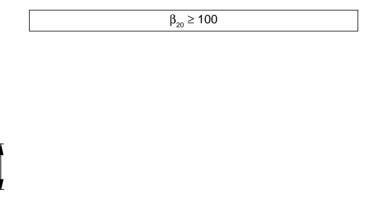
Notes on the selection of fluid

For correct selection of the fluid it is assumed that the operating temperature in the tank is known (open loop circuits), in relation to the ambient temperature.

The fluid should be selected so that, within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}), (see shaded section of selection diagram). We recommend that the higher viscosity grade is selected in each case.

Example: At an ambient temperature of X° C the operating temperature in the tank will be 60° C. In the optimum operating viscosity range (v_{opt} ; shaded section) this corresponds to viscosity grade VG 46 or VG 68; VG 68 should be selected.

Important: The leakage oil temperature is influenced by pressure and speed and is always higher than the tank temperature. At no point in the system, however, may the temperature be higher than 90° C.


If it is not possible to comply with the above conditions because of extreme operating parameters or a high ambient temperature, please consult us.

Filtration

In order to ensure reliable operation of the axial piston unit, the operating fluid must be maintained to a cleanliness class of at least 9 to NAS 1638

This may be achieved, for example, with filter elements type...D 020...(see RE 31278).

This gives the following degree of separation:

Technical data

Inlet operating pressure range Absolute pressure at part $S(\Lambda)$

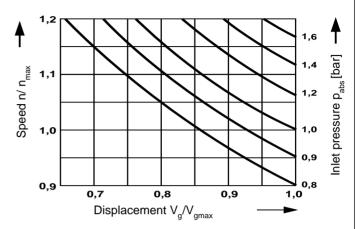
Absolute pressure at port 5 (A)	
P _{abs min}	0,8 bar
P _{abs max}	30 bar

Outlet operating pressure range

Pressure at port B

Nominal pressure p_N 280 bar

Applications with intermittent operating pressures of up to 315 bar at 10% duty cycle are permitted.


Case drain pressure

Maximum pressure of leakage fluid (at ports L, L,):maximum 0,5 bar higher than input pressure at port S, but not exceeding 2 bar absolute.

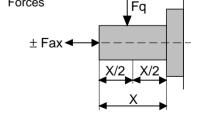
Direction of flow

S to B

Determination of inlet pressure \mathbf{p}_{abs} at suction port S, or reduction in flow for increasing speed.

Tabulated data (theoretical values, without considering η_{n} , and η_{n} ; approximate values)

Size				28	45	71	100	140
Displacement		V _{g max}	cm ³	28	45	71	100	140
Max. speed ¹)	at V _{g max}	n _{o max}	rpm	3000	2600	2200	2000	1800
Max. flow	at n _{o max}	$Q_{_{omax}}$	L/min	84	117	156	200	252
	at n _e = 1500 rpm		L/min	42	68	107	150	210
Max. power ($\Delta p = 280$ bar)	at n _{o max}	P _{o max}	kW	39	55	73	93	118
	at n _e = 1500 rpm		kW	20	32	50	70	98
Max. torque ($\Delta p = 280$ bar)	at V _{g max}	T _{max}	Nm	125	200	316	445	623
Torque ($\Delta p = 100 \text{ bar}$)	bei V _{g max}	Т	Nm	45	72	113	159	223
Moment of inertia at drive axis		J	kgm ²	0,0017	0,0033	0,0083	0,0167	0,0242
Filling capacity			L	0,7	1,0	1,6	2,2	3,0
Weight (without fluid)		m	kg	15	21	33	45	60
Permissible loading of drive shaft:								
Max. axial force		F _{ax max}	Ν	1000	1500	2400	4000	4800
Max. radial force ²)		F _{q max}	N	1200	1500	1900	2300	2800


¹) Values shown are valid for an absolute pressure of 1 bar at suction port S.

If the flow is reduced or if the inlet pressure is increased the speed may be increased according to the diagram.

²) Please consult us for higher radial forces.

Determination of size

Flow	$Q = \frac{V_g \cdot n \cdot \eta_v}{1000}$	[L/min]
Drive torque	$T = \frac{1,59 \cdot V_g \cdot \Delta p}{100 \cdot \eta_{mh}}$	[Nm]
Drive power	$P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{T \cdot n}{9549} = \frac{Q \cdot \Delta p}{600 \cdot \eta}$	[kW]

 V_g = geometric displacements Δp = differential pressure [bar] = geometric displacement [cm³] per rev.

Forces

- η_v = volumetric efficiency
- η_{mh} = mechanical-hydraulic efficiency
- η_{t} = total efficiency $(\eta_t = \eta_y \cdot \eta_{mh})$

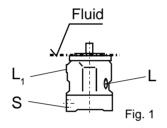
Installation notes

Optional installation position. The pump housing must be filled with fluid during commissioning and remain full when operating. In order to attain the lowest noise level, all connections (suction, pressure, case drain ports) must be linked by flexible couplings to tank.

Avoid placing a check valve in the case drain line.

This may, however, be permissible in individual cases, after consultation with us.

1. Vertical installation (shaft end upwards)


The following installation conditions must be taken into account:

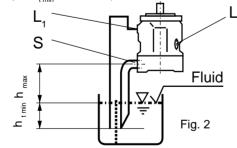
1.1. Arrangement in tank

Before installation fill pump housing, keeping it in a horizontal position.

a) If the minimum fluid level is equal to or above the pump mounting surface leave ports "L", "L₁" and "S" open (see Fig.1).

b) If the minimum fluid level is below the pump mounting surface pipe port "L₁", and possibly "S" according to Fig. 2. Close port "L" with respect to conditions in 1.2.1.

1.2. Arrangement outside tank


Before installation fill pump housing, keeping it in a horizontal position. For mounting above tank see Fig. 2.

Limiting condition:

1.2.1. Minimum pump inlet pressure $p_{inlet min} = 0.8$ bar under static and dynamic loading.

Note: Avoid mounting above tank wherever possible in order to attain a low noise level.

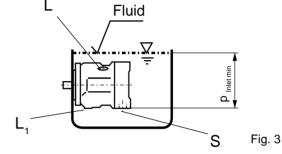
pressure loss, but may not be greater than $h_{max} = 800$ mm (immersion depth $h_{tmin} = 200$ mm).

The permissible suction height h is a result of the overall Total pressure loss $\Delta p_{total} = \Delta p_1 + \Delta p_2 + \Delta p_3 \le (1 - p_{inlet min}) = 0.2$ bar Δp_1 : Pressure loss in pipe due to accelerating column of fluid

$$\begin{split} \Delta p_1 &= \frac{\rho \cdot 1 \cdot dv}{dt} \cdot 10^{-5} \text{ (bar)} \\ \rho &= \text{density (kg/m^3)} \\ I &= \text{pipe length (m)} \\ dv/dt &= \text{change in rate of suction} \\ (m/s^2) \\ \Delta p_2 &: \text{Pressure loss due to static head} \\ \Delta p_2^2 &= h \cdot \rho \cdot g \cdot 10^{-5} \text{ (bar)} \\ \rho &= \text{density (kg/m^3)} \\ g &= \text{acc. due to gravity.} = \\ 9,81 \text{ m/s}^2 \end{split}$$

Δp_3 : Line losses (elbows etc.)

2. Horizontal installation


The pump must be installed so that either "L" or "L $_1$ " is at the top.

2.1. Arrangement in tank

a) If the minimum fluid level is above the top of the pump leave ports "L", "L," and "S" open (see Fig. 3)

b) If the minimum fluid level is equal to or below the top of the pump pipe ports "L", "L₁" and possiby "S" according to Fig. 4. Conditions according to 1.2.1.

2.2. Arrangement outside tank

Fill pump housing before commissioning.

Pipe port "S" and the higher of the two case drain ports "L" and "L,".

a) For mounting above tank see Fig. 4. Conditions according to 1.2.1.

b) Position below tank

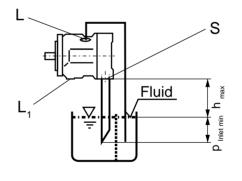


Fig. 4

Pipe ports "L" and "S" according to Fig. 5.

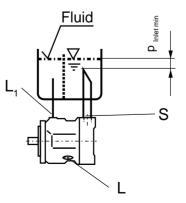
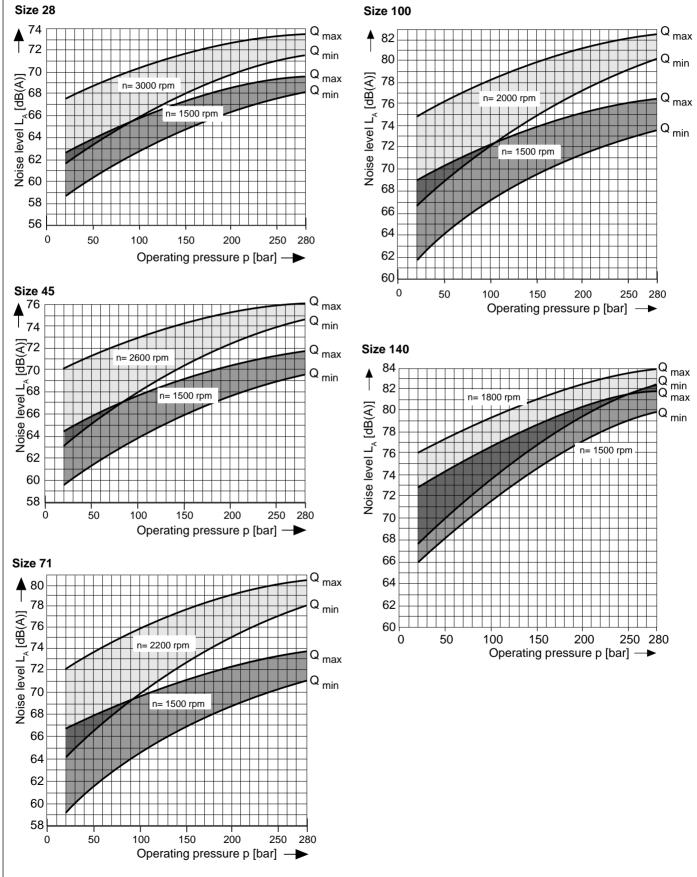
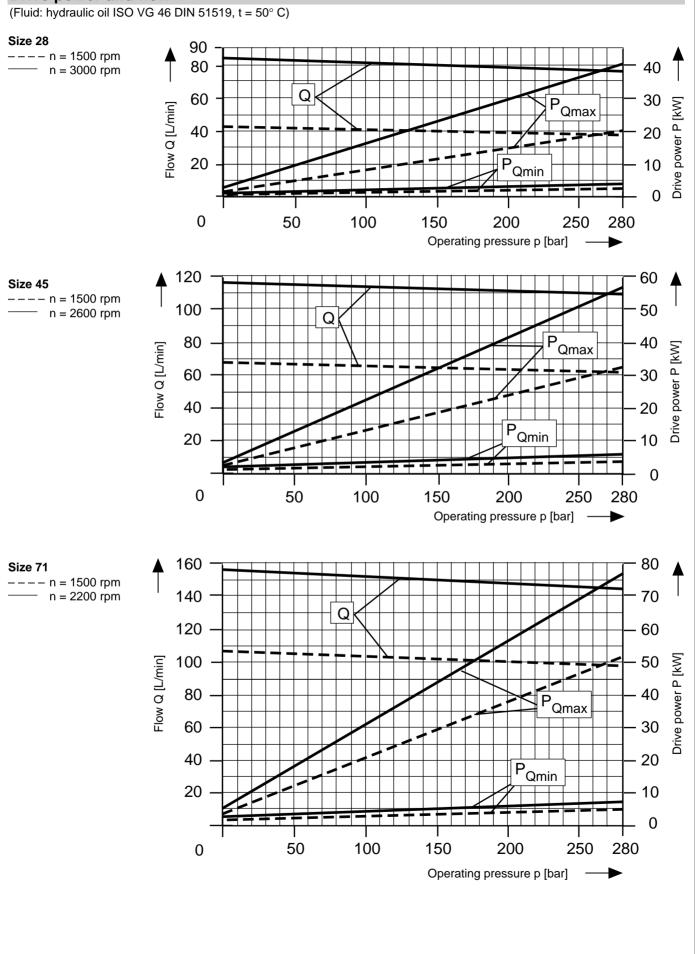
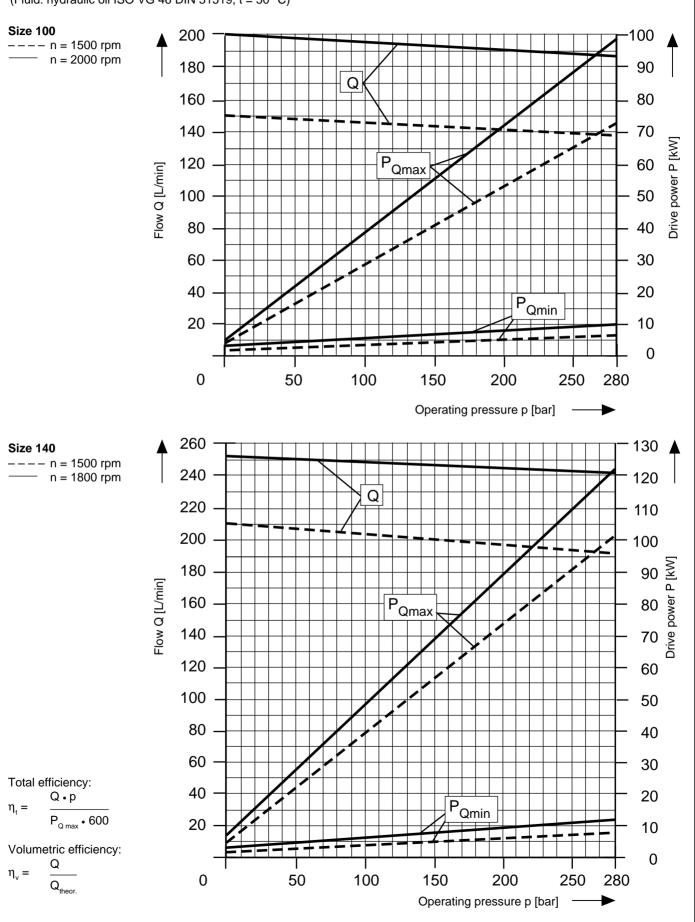



Fig. 5

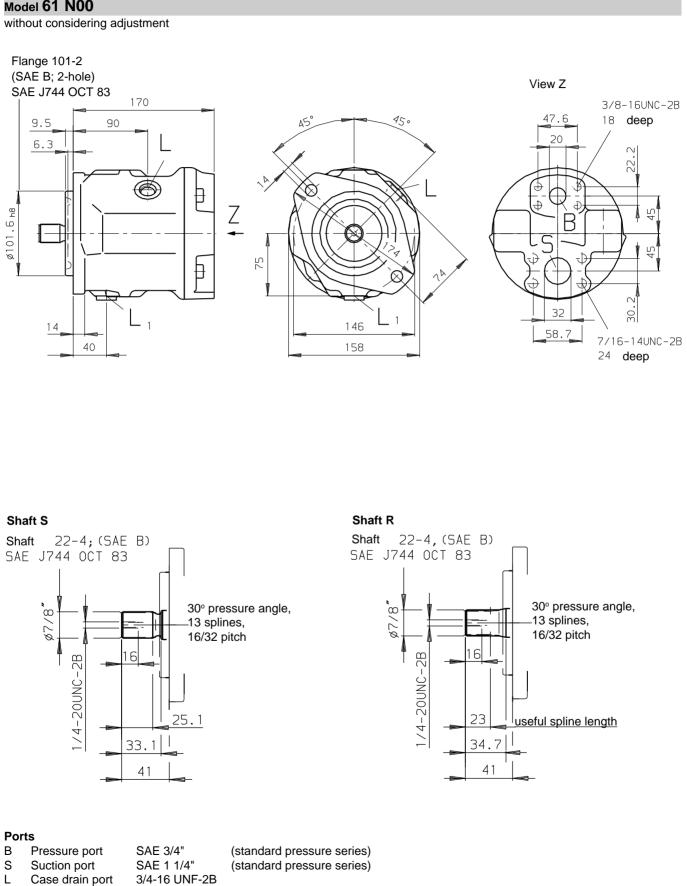

Characteristics for pump with pressure control DR

Noise characteristic

Measured in an anechoic chamber Distance from microphone to pump = 1 m Measurement tolerance: \pm 2 dB (A) (Fluid: hydraulic oil ISO VG 46 DIN 51519, t = 50° C)



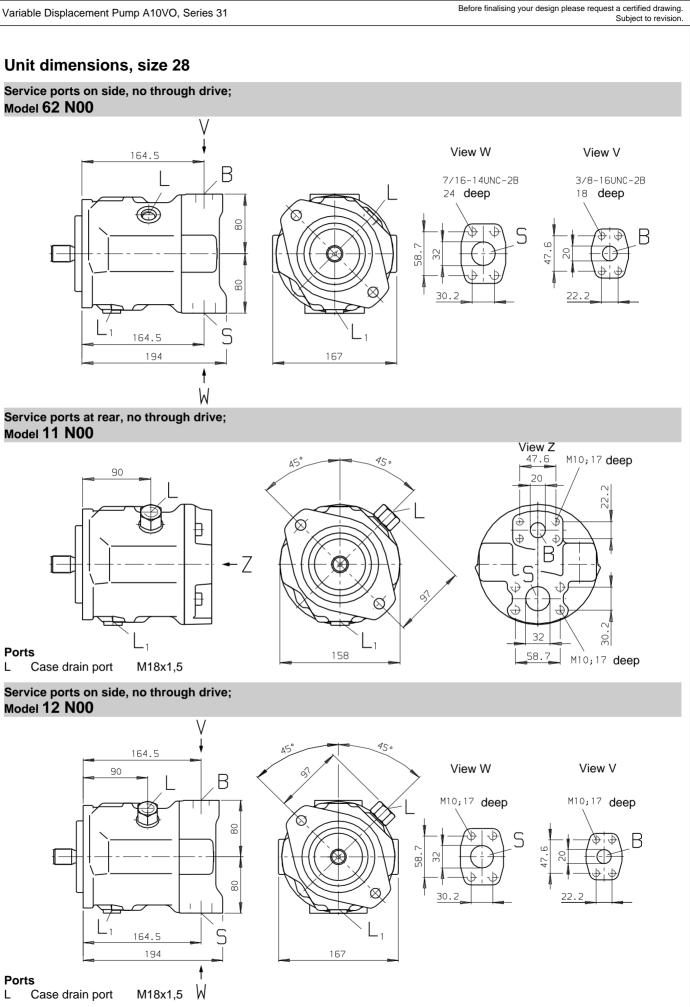
Drive power and flow


Drive power and flow

(Fluid: hydraulic oil ISO VG 46 DIN 51519, t = 50° C)

Unit dimensions, size 28

Service ports at rear, no through drive; Model **61 N00**

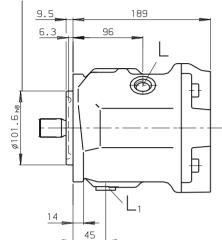

Case drain port

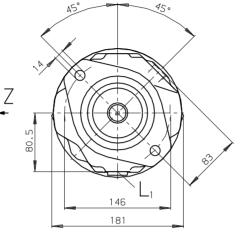
3/4-16 UNF-2B

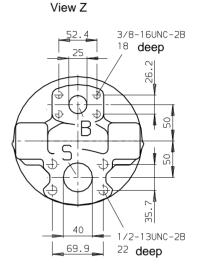
(sealed in factory)

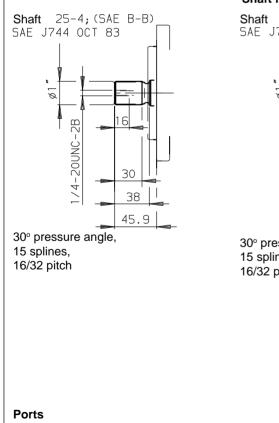
L₁

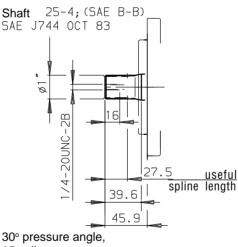
RE 92701/11.95




Unit dimensions, size 45


Service ports at rear, no through drive; Model 61 N00


Flange 101-2 (SAE B; 2-hole) SAE J744 OCT 83



Shaft S

Shaft R

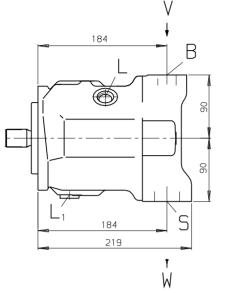
15 splines, 16/32 pitch

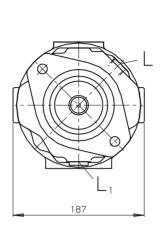
SAE J744 OCT 83

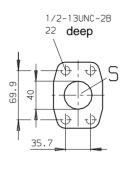
25.1

22-4; (SAE B)

Shaft U Shaft

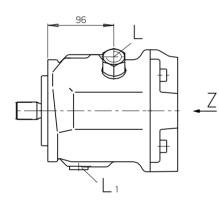

30° pressure angle, 13 splines, 16/32 pitch

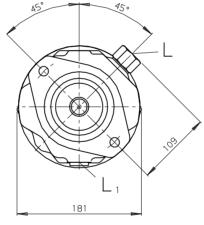

- B Pressure port SAE 1" (standard pressure series)
- S Suction port SAE 1 1/2" (standard pressure series)
- L Case drain port 7/8-14 UNF-2B
- L₁ Case drain port 7/8-14 UNF-2B(sealed in factory)

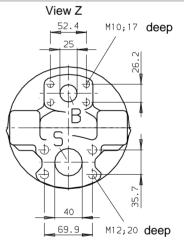

Before finalising your design please request a certified drawing. Subject to revision.

Unit dimensions, size 45



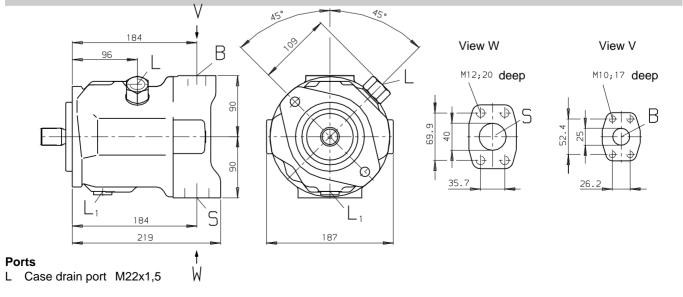


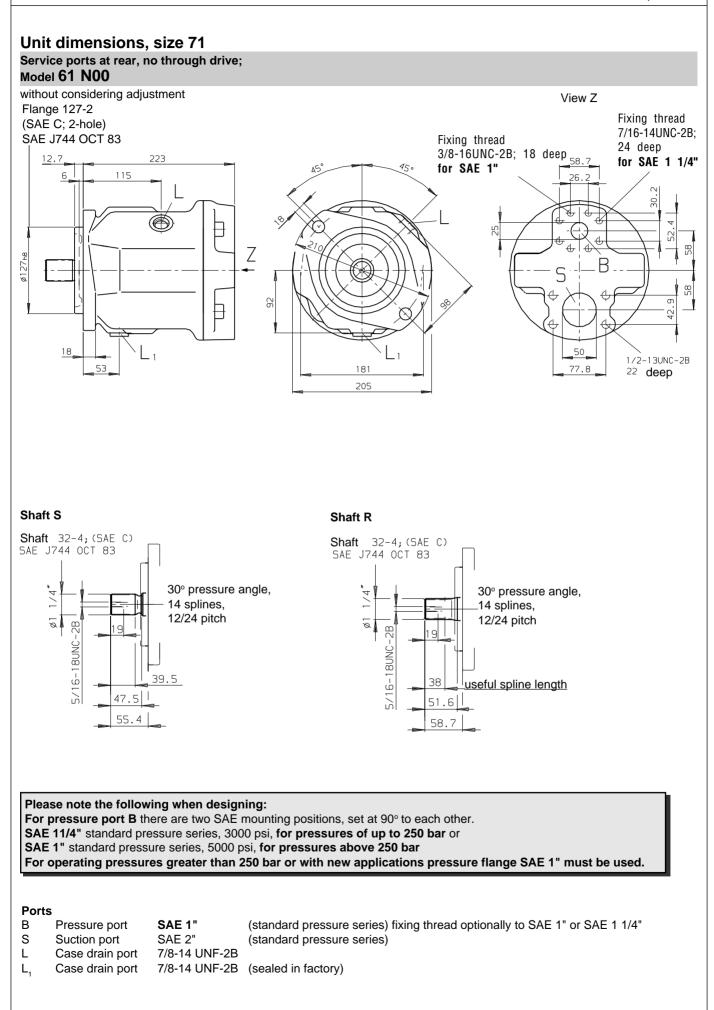

View W



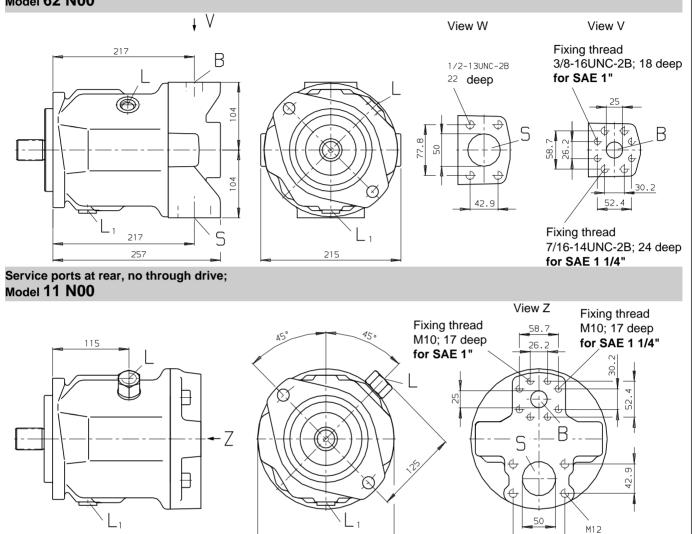
View V

Service ports at rear, no through drive; Model **11 N00**



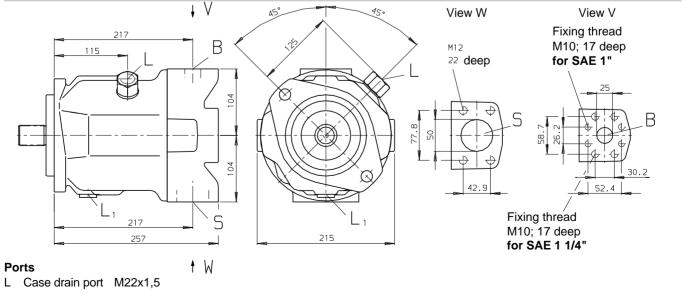


Ports


L Case drain port M22x1,5

Service ports on sides, no through drive; Model **12 N00**

Service ports on sides, no through drive; Model 62 N00



Ports

L

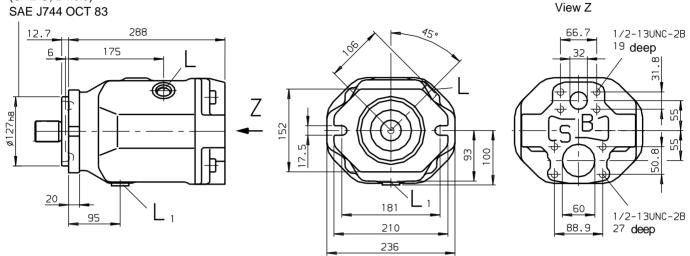
Case drain port M22x1,5

Service ports on sides, no through drive; Model **12 N00**

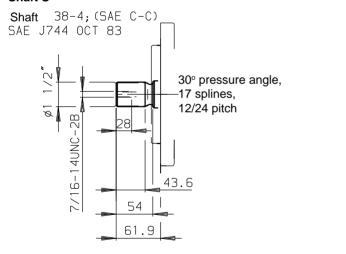
205

77.8

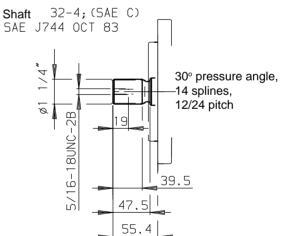
22 deep

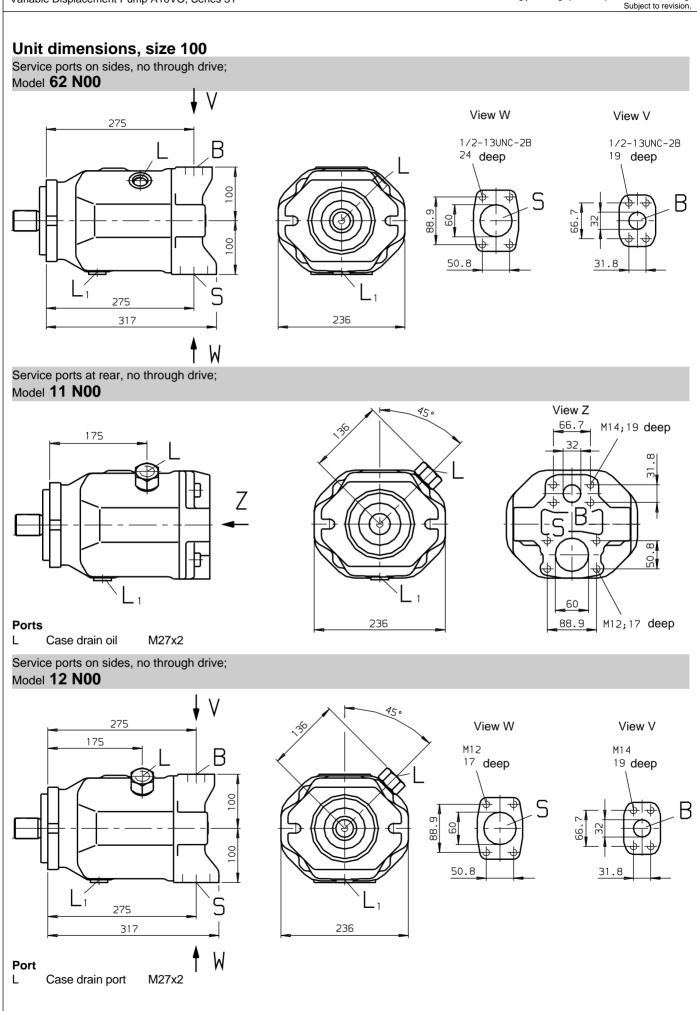

Unit dimensions, size 100

Service ports at rear, no through drive;


Model 61 N00

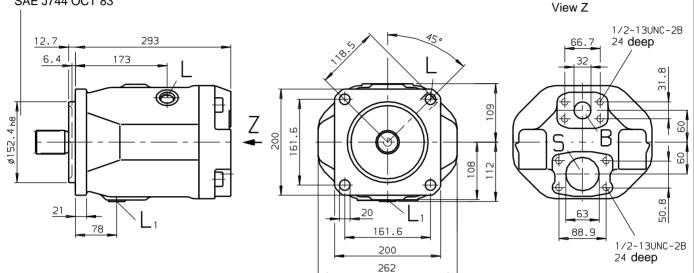
without considering adjustment

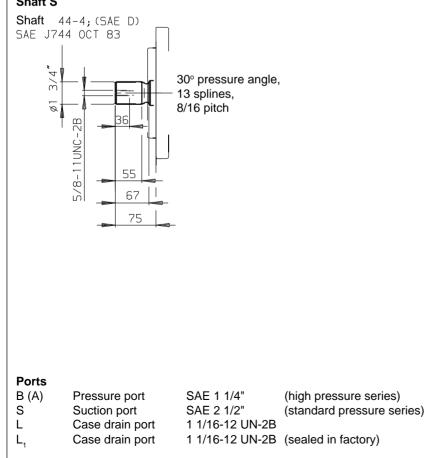

Flange 127-2 (SAE C; 2-hole) SAF J744 OCT 8

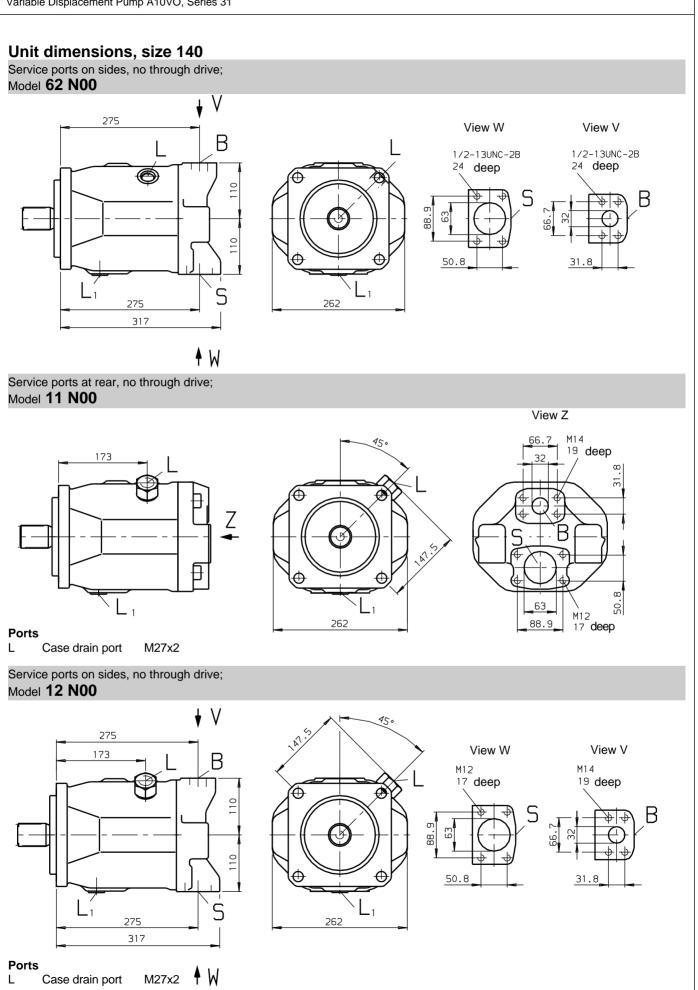

Shaft U

Ports

FUILS			
В	Pressure port	SAE 1 1/4"	(high pressure series)
S	Suction port	SAE 2 1/2"	(standard pressure series)
L	Case drain port	1 1/16-12 UN-2B	
L ₁	Case drain port	1 1/16-12 UN-2B	(sealed in factory)

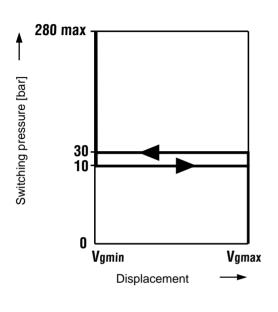

Before finalising your design please request a certified drawing.


Unit dimensions, size 140


Service ports at rear, no through drive; Model 61 N00 without considering adjustment

Flange 152-4 (SAE D; 4-hole) SAE J744 OCT 83

Shaft S


DG 2-position adjustment, direct control

The pump can be set to a minimum swivel angle by connecting an external switching pressure to port X.

This will supply the piston direct with oil, a minimum setting pressure of $p_{st} \ge 30$ bar being required.

The pump can only be switched between $V_{\mbox{\tiny gmax}}$ or $V_{\mbox{\tiny gmin}}.$

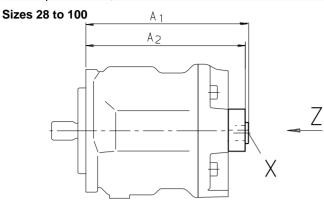
Static characteristic

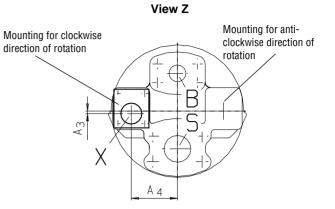
Switching pressure in X	=	0 bar	$= V_{gmax}$
Switching pressure in X	≥	30 bar	$= V_{gmin}$

Ports

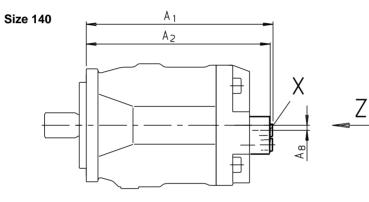
В	Pressure port
S	Suction port
L, L1	Case drain ports (L1 sealed)
Х	Pilot pressure port (sealed)

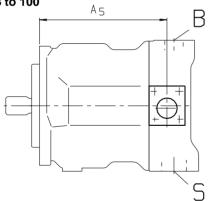
Control data

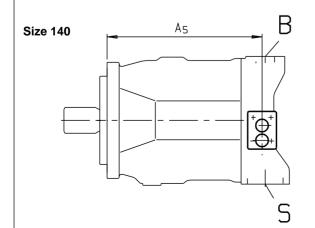

Min. switching pressure	30 bar	
Max. perm. switching pressure	280 bar	

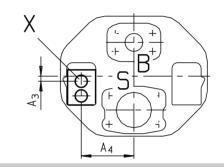

dimensi	ons								
A ₁	A ₂	\mathbf{A}_{3}	A ₄	A ₅	A ₆	A ₇	A ₈	X (sealed	1)
193,5	190	0	55	158	100	103,5	3	R 1/4"	
212,5	209	3	63,5	173	110	113,5	3	R 1/4"	
246,5	242,5	3	73,5	201	123,5	127,5	3	R 1/4"	for all models
311,5	307,5	3	81	268	128,5	132,5	3	R 1/4"	1
338	334	3	94	268	150,5	155	3	R 1/4"	
	A ₁ 193,5 212,5 246,5 311,5	193,5 190 212,5 209 246,5 242,5 311,5 307,5	A1 A2 A3 193,5 190 0 212,5 209 3 246,5 242,5 3 311,5 307,5 3	A ₁ A ₂ A ₃ A ₄ 193,5 190 0 55 212,5 209 3 63,5 246,5 242,5 3 73,5 311,5 307,5 3 81	A ₁ A ₂ A ₃ A ₄ A ₅ 193,5 190 0 55 158 212,5 209 3 63,5 173 246,5 242,5 3 73,5 201 311,5 307,5 3 81 268	A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ 193,5 190 0 55 158 100 212,5 209 3 63,5 173 110 246,5 242,5 3 73,5 201 123,5 311,5 307,5 3 81 268 128,5	A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ 193,5 190 0 55 158 100 103,5 212,5 209 3 63,5 173 110 113,5 246,5 242,5 3 73,5 201 123,5 127,5 311,5 307,5 3 81 268 128,5 132,5	A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ A ₈ 193,5 190 0 55 158 100 103,5 3 212,5 209 3 63,5 173 110 113,5 3 246,5 242,5 3 73,5 201 123,5 127,5 3 311,5 307,5 3 81 268 128,5 132,5 3	A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ A ₈ X (sealed) 193,5 190 0 55 158 100 103,5 3 R 1/4" 212,5 209 3 63,5 173 110 113,5 3 R 1/4" 246,5 242,5 3 73,5 201 123,5 127,5 3 R 1/4" 311,5 307,5 3 81 268 128,5 132,5 3 R 1/4"

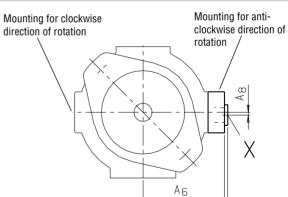
Before finalising your design please request a certified drawing. Subject to revision.

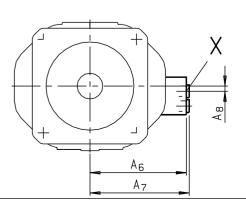

Unit dimensions DG

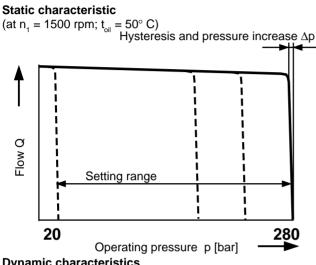

View Z




Unit dimensions DG


Service ports on sides; Models 62 and 12

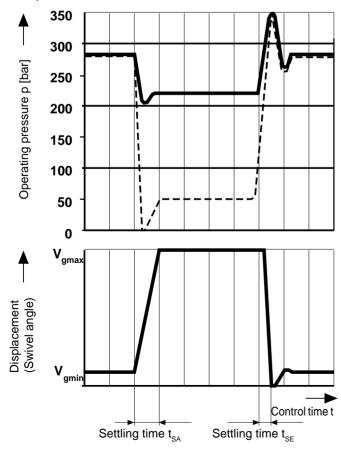

Sizes 28 to 100

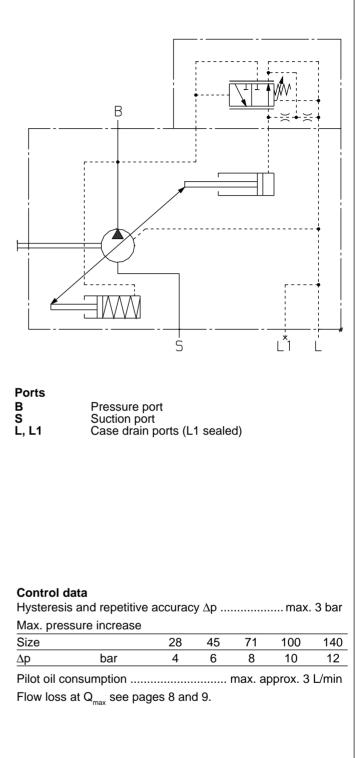


A7

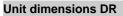
DR **Pressure control**

The pressure control serves to maintain a constant pressure in the hydraulic system, within the control range of the pump. The pump therefore supplies only the amount of hydraulic fluid required by the actuators. Pressure may be smoothly set at the pilot valve.


Dynamic characteristics

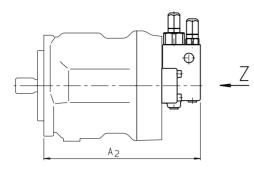

The curves show average measured values under test conditions, with the unit within the tank. Conditions:

n = 1500 rpm


 $t_{oil} = 50^{\circ} C$ Pressure cut-off at 350 bar

Stepped loading by suddenly opening or closing the pressure line using a pressure relief valve set at 1m downstream from the axial piston unit.

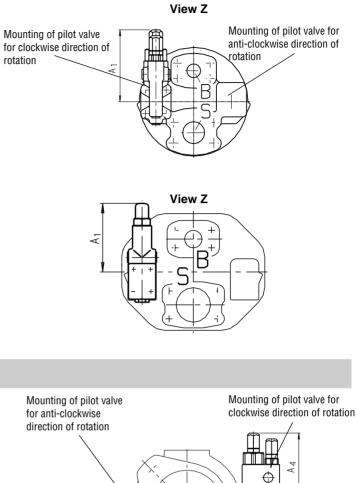
Size	t _{sa} (ms)	t _{sa} (ms)	t _{se} (ms)	
Size	against 50 bar	against 220 bar	zero stroke 280 ba	
28	60	30	20	
45	80	40	20	
71	100	50	25	
100	125	90	30	
140	130	110	30	

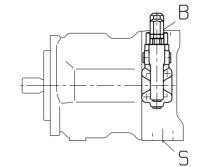

Service ports at rear; Models 61N00 and 11N00

Sizes 28 to 100

Size 140

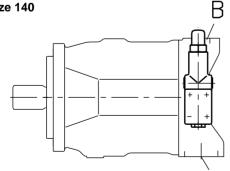
Unit dimensions DR

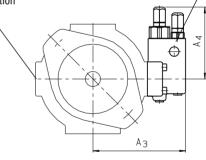

Sizes 28 to 100

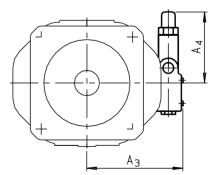


A2

Ð


Ζ


Service ports on sides; Models 62 and 12


Size 140

Size	Α ₁	A ₂	A ₃	Α ₄	
28	109	225	136	106	
45	106	244	146	106	
71	106	278	160	106	
100	106	344	165	106	
140	127	339	169	127	

S

For sizes 28 to 100 the DFR valve is used, whereby the flow control $% \left({{{\left[{{{\left[{{{\left[{{{\left[{{{c}}} \right]}} \right]_{i}}} \right]_{i}}}}} \right]_{i}}} \right)$ is sealed in the factory and not tested.

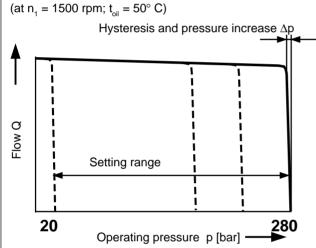
DRG Pressure control, remote control

Function and design as for DR.

A pressure relief valve may be externally piped to port X for remote control purposes. It is not, however, included with the DRG control.

The differential pressure at the pilot valve is set as standard to 20 bar and this results in a pilot flow of 1,5 L/min. If another setting is required (in the range 10 - 22 bar), please state this in clear text.

We recommend that one of the following is used as the separate pressure relief valve:


DBDH 6 (hydraulic) to RE 25402,

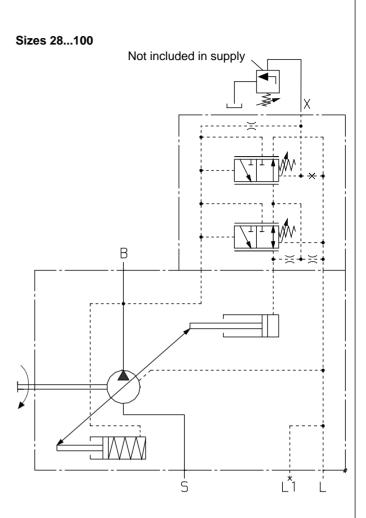
DBEC-3X (electrical) to RE 29142 or

DBETR-SO 381 with 0,8mm dia. nozzle in P (electrical) to RE 29166.

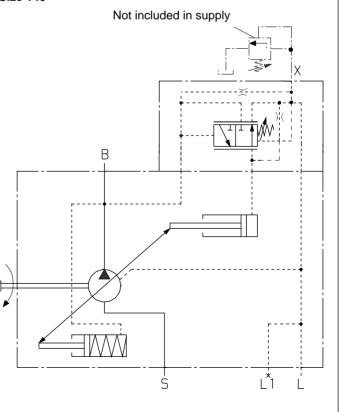
The length of piping must not exceed 2m.

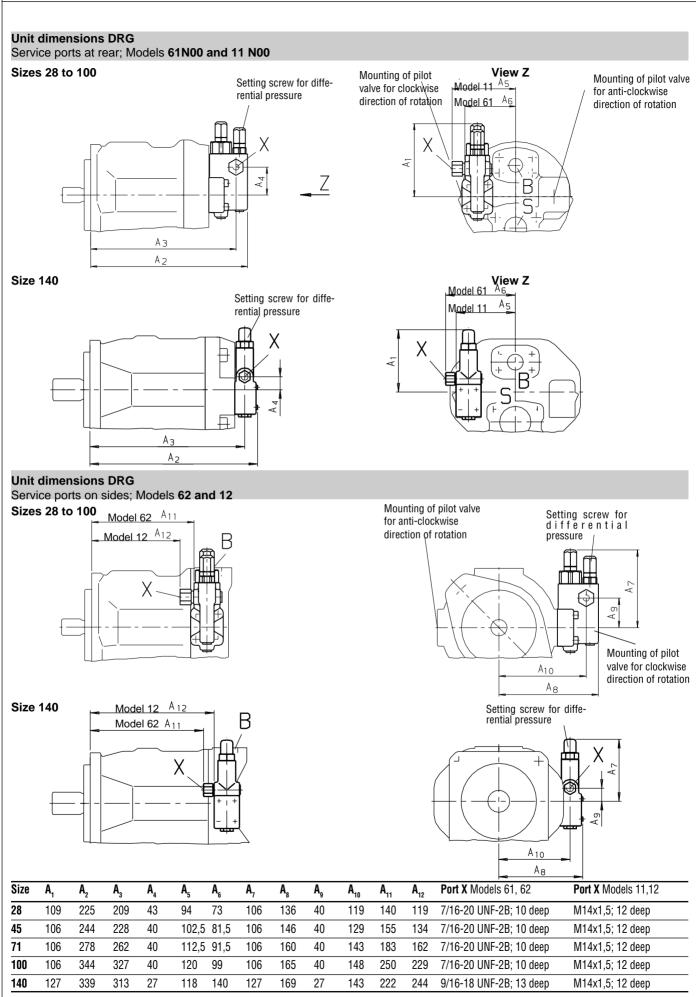
Static characteristic

Control data


Hysteresis and repetitive accuracy Δp max. 3 ba												
Max. pressure increase												
Size	28	45	71	100	140							

Size		28	45	71	100	140
Δp	bar	4	6	8	10	12


Pilot oil consumption approx. 4,5 L/min


Flow loss at $\ensuremath{\mathsf{Q}_{\text{max}}}$ see pages 8 and 9.

PortsBPressure portSSuction portL, L1Case drain ports (L1 sealed)											
Х	Pilot pressu	Pilot pressure port									
	Model	Sizes 28-100	Size 140								
	61 and 62	without adaptor	with adaptor								
	11 and 12	with adaptor	without adaptor								
		•	•								

Size 140

DRT1/2 Offsettable pilot pressure control for load pressure control

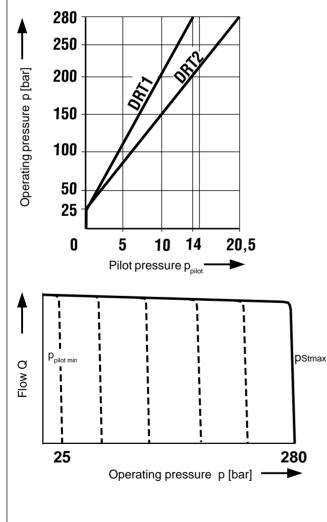
DRT1/2 is a pressure control offsettable by means of pilot pressure.

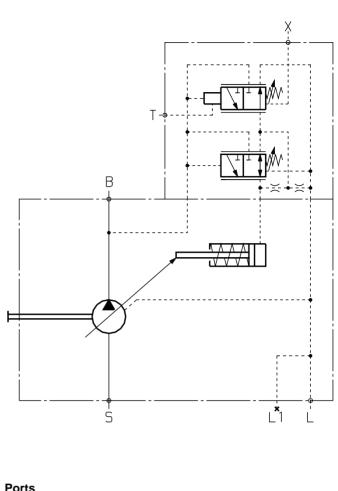
Without pilot pressure the pump is on stand-by (approx. 25 bar).

With pilot pressure the pump pressure is increased, according to the transmission factor of either the DRT1 or DRT2 (see Static characteristic).

This control is designed especially for load pressure control.

It is used in mobile machinery applications.

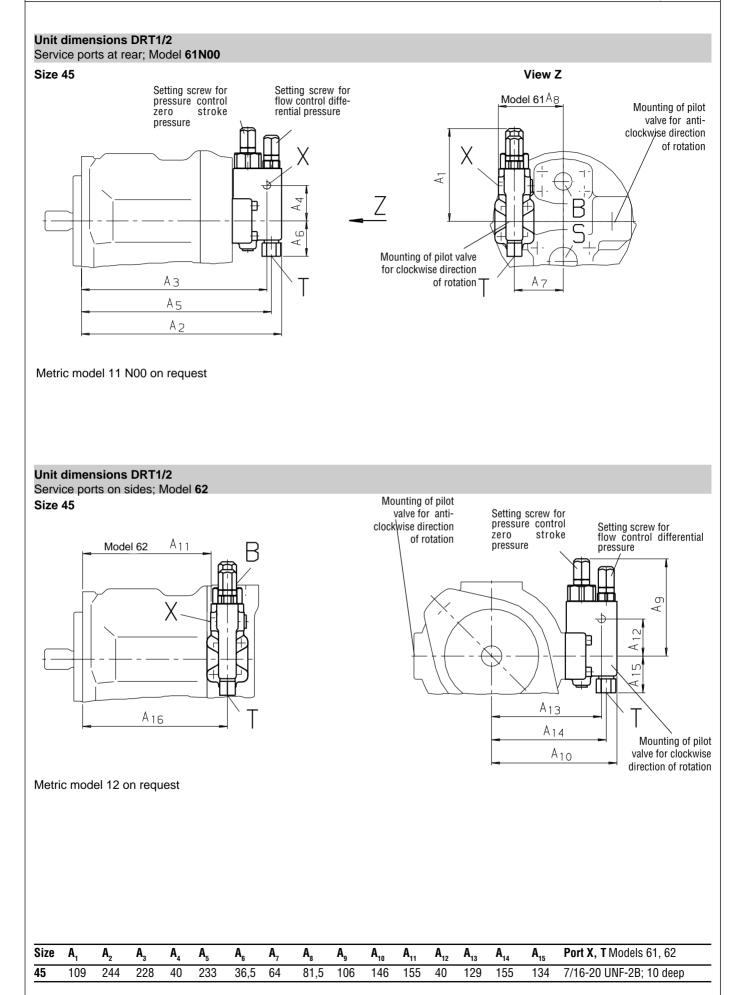

In this system the main spool is hydraulically actuated and the pump pressure selected by means of the pilot transmitter.


We recommend that a separate 4/3 way directional value e.g. M1-16 to RE 64263 be used.

Transmission factors DRT1 i = 18,2

DRT2 i = 12,4

Static characteristics

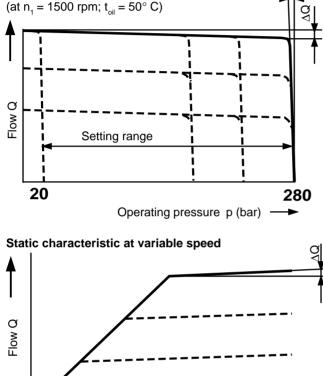


Х	Pilot pressure port
т	Case drain port (pipe separately to tank)
L, L1	Case drain ports (L1 sealed)
S	Suction port
В	Pressure port
FUILS	

Control data

Pilot oil consumption approx. 4,5 L/min
Flow loss at Q _{max} see pages 8 and 9.

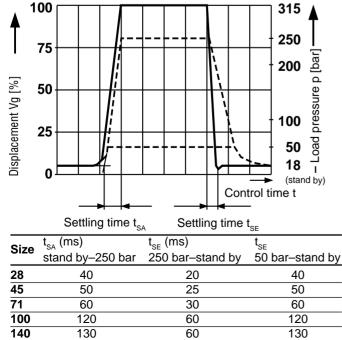
Before finalising your design please request a certified drawing. Subject to revision.

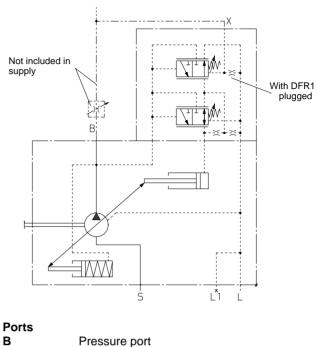

DFR/DFR1 Pressure/flow control

In addition to the pressure control function, the pump flow may be varied by means of a differential pressure at the actuator (e.g. an orifice).

In model DFR1 the X orifice is plugged.

For function and fittings see pages 22/23.


Static characteristic



Dynamic characteristic of flow control

The curves shown are measured average values under test conditions, with the unit within the tank.

Speed n

в S L, L1	Pressure port Suction port Case drain ports (L1 sealed)											
х	Pilot pressu	Pilot pressure port										
	Model	Sizes 28-100	Size 140									
	61 and 62	without adaptor	with adaptor									
	11 and 12	with adaptor without ad										

Control data

For pressure control technical data see page 22.

Max. flow deviation (hysteresis and increase)

measured at drive speed n = 1500 rpm

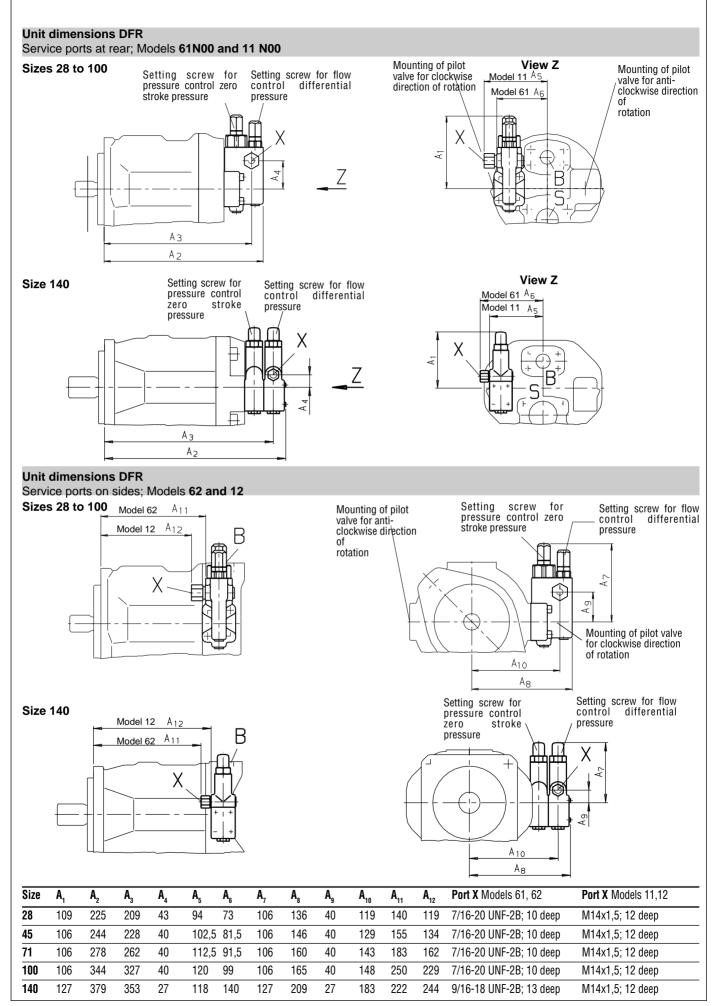
Size		28	45	71	100	140
ΔQ_{max}	L/min	1,0	1,8	2,8	4,0	6,0

Pilot oil consum	otion DFR	max. approx. 3	- 4,5 L/min
Pilot oil consum	otion DFR1	max. appr	ox. 3 L/min
Flow loss at Q	see pages 8 and	19.	

Flow control/differential pressure Δp :

Adjustable between 10 and 22 bar (higher values on request) Standard setting: 14 bar. If a different setting is required, please state in clear text.

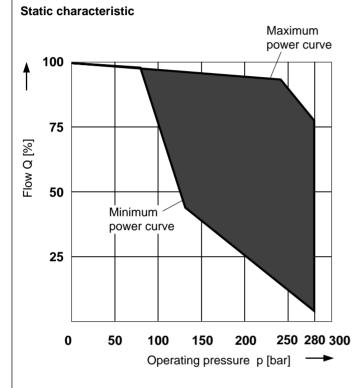
When port X is unloaded to tank, a zero stroke pressure of $p = 18 \pm 2$ bar ("stand by") results.

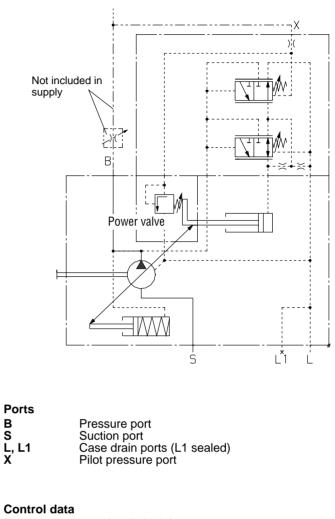

Optional valves at port B

(not included in supply) Mobile valve blocks SP 12 (RE 64145)

Mobile valve blocks SP 18 (RE 64148) Mobile valve blocks MP 18 (RE 64594) Mobile valve blocks MP 22 (RE 64598)

Proportional directional valves 4WRE (RE 29060)


Before finalising your design please request a certified drawing. Subject to revision.


DFLR Pressure/flow/power control

In order to achieve a constant drive torque with a varying operating pressure, the swivel angle and with it the output flow from the axial piston unit is varied so that the product of flow and pressure remain constant.

Flow control is possible below the limit of the power curve.

The power characteristic is factory-set, so please enter details in clear text, e.g. 20 kW at 1500 rpm.

For pressure control technical data see page 22.

For flow control technical data see page 28.

Start of control	from 80 bar
Pilot oil consumption	. max. approx. 5,5 L/min
Flow loss at Q_{max} see pages 8 and 9.	

Size	A ₁	A ₂	\mathbf{A}_{3}	A_4	A_{5}	A ₆	A ₇	A ₈	\mathbf{A}_{g}	A ₁₀	A ₁₁	A ₁₂	A ₁₃	A ₁₄	Port X Models 61, 62	Port X Models 11,12
28	109	225	120	107	48	86	106	136	40	119	48	51	194	197	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
45	106	244	129	112	54	91,5	106	146	40	129	48	51	209	212	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
71	106	278	139	124	69	103,5	106	160	40	143	48	51	237	240	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
100	106	344	145	129	111	108,5	106	165	40	148	48	51	304	307	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
140	127	379	148	140	99	123,5	127	209	26	183	48	51	314	314	7/16-20 UNF-2B; 10 t.(Mod.61) N	/14x1,5;
140															9/16-18 UNF-2B; 13 t.(Mod.62)	

Α5

Ħ

Service ports at rear; Models 61N00 and 11 N00

Power valve

Ā

Ζ

Ζ

Mounting of pilot valve

Unit dimensions DFLR

Sizes 28 to 100

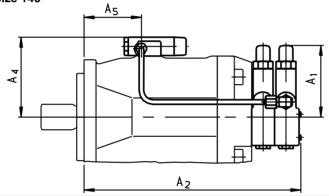
Before finalising your design please request a certified drawing. Subject to revision. View Z Mounting of pilot Mounting of Model 61_A 11 pilot valve for valve for clockwise anti-clockwise direction of rotation Model 11 A12 direction of rotation

Аз

Model 11 A12

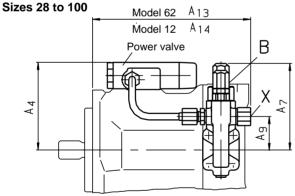
Aз

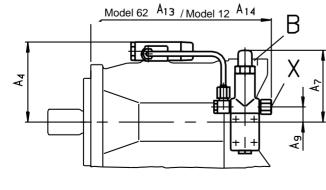
View Z Model 61 A 11


ЧG

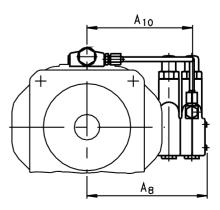
Х

۵

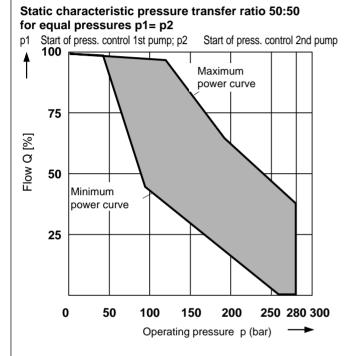

A


A₂


Unit dimensions DFLR

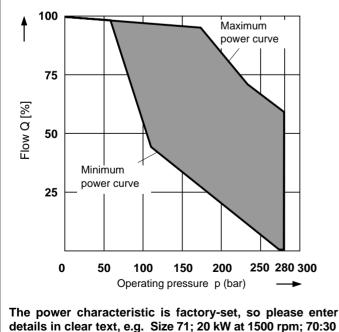

Service ports on sides; Models 62 and 12

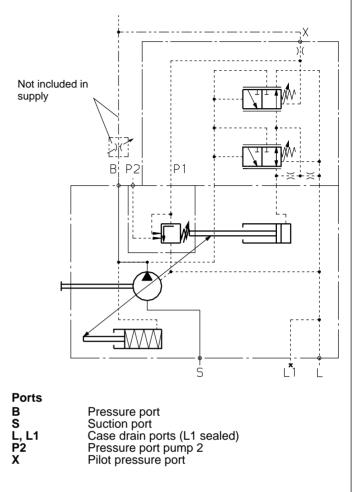
Size 140



DFSR Pressure/flow/summation control

The summated input to the A10 control pump and a second pump is limited.


There are two overload ratios 70:30 and 50:50, the former relating to the A10 and the latter to the second pump. Example: A10VO 45 DFSR + G2 19


gives an area ratio $45 : 19 \stackrel{\land}{=} 70 : 30$ If this is the first design please consult the relevant project office. Flow control is possible below the limit of the power curve.

Static characteristic pressure transfer ratio 70:30 for equal pressures p1= p2

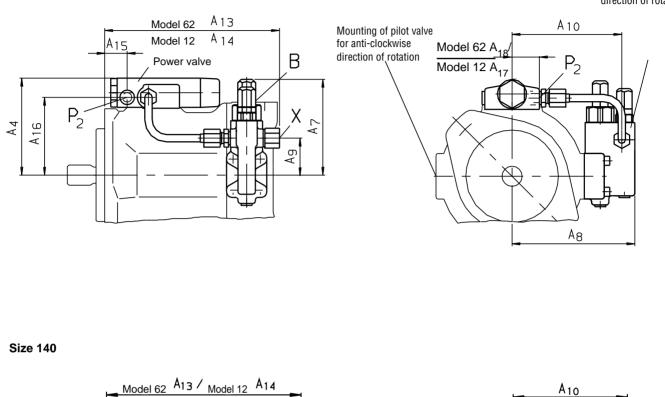
p1 Start of press. control 1st pump; p2 Start of press. control 2nd pump

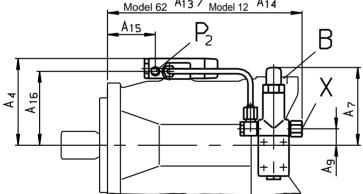
Control data

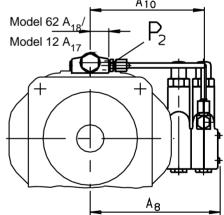
For pressure control technical data see page 22.

For flow control technical data see page 28. Pilot oil consumption max. approx. 5,5 L/min Flow loss at Q_{max} see pages 8 and 9.

For Models 61 N00 and 11 N00 this is not applicable, as the second pump is usually flanged onto the through drive.


Before finalising your design please request a certified drawing. Subject to revision.


Unit dimensions DFSR


Service ports on sides; Models 62 and 12

Sizes 28 to 100

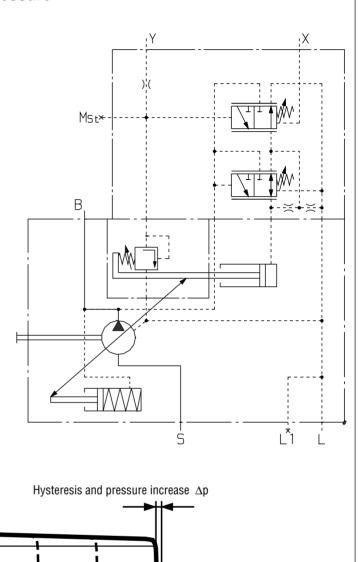
Mounting of pilot valve for clockwise direction of rotation

Size	A ₄	A ₇	A ₈	A ₉	A ₁₀	A ₁₃	A ₁₄	A ₁₅	A ₁₆	A ₁₇	A ₁₈	Port P2-Model 62	Port X-Model 62	Port P2 and X-Model 12
28	107	106	136	40	119	194	197	24	86	51	28,5	7/16-20 UNF-2B; 10 deep	7/16-20 UNF-2B	M14x1,5
45	112	106	146	40	129	209	212	30	91,5	51	28,5	7/16-20 UNF-2B; 10 deep	7/16-20 UNF-2B	M14x1,5
71	124	106	160	40	143	237	240	45	103,5	51	29,5	7/16-20 UNF-2B; 10 deep	7/16-20 UNF-2B	M14x1,5
100	129	106	165	40	148	304	307	87	109	51	28,5	7/16-20 UNF-2B; 10 deep	7/16-20 UNF-2B	M14x1,5
140	140	127	209	27	183	314	314	75	123,5	51	28,5	7/16-20 UNF-2B; 10 deep	9/16-18 UNF-2B	M14x1,5

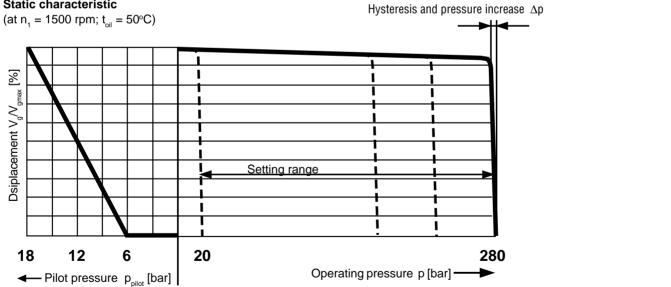
FHD Flow control, dependent on pilot pressure with pressure control

The swivel angle of the pump, and hence the displacement or flow, is dependent on the pilot pressure $P_{pilot X}$ in port X. A constant pressure of $p_y = 35$ bar must be fed to port Y. There is integral pressure control which may be smoothly varied at the pilot valve.

(Please state setting values in clear text).

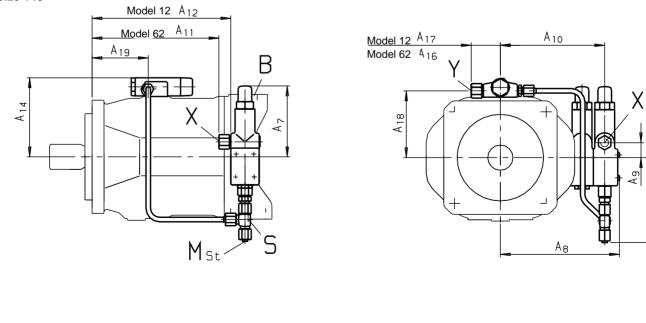

Control data

 ± 2 % of V_{g max} Hysteresis


Ext. pilot oil consumption in Y max. approx 3 ... 4,5 L/min Pressure increase Δp max. 4 bar Flow loss at Q_{max} see pages 8 and 9.

Pressure port Suction port Case drain ports (L1 sealed) Pilot pressure port Measurement port

Unit	dimen	sions												
Size	A ₇	A ₈	A ₉	A ₁₀	A ₁₁	A ₁₂	A ₁₄	A ₁₆	A ₁₇	A ₁₈	A ₁₉	A ₂₀	Ports X, Y	Ports X, Y
28	106	136	40	119	140	119	107	48	51	86	48	113	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
45	106	146	40	129	155	134	112	48	51	91,5	54	113	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
71	106	160	40	143	183	162	124	48	51	103,5	69	113	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
100	106	165	40	148	250	229	129	48	51	108,5	111	113	7/16-20 UNF-2B; 10 deep	M14x1,5; 12 deep
140	127	209	27	183	222	244	140	48	51	119	99	150	9/16-18 UNF-2B; 13 t. (X) 7/16-20 UNF-2B; 10 t. (Y)	M14x1,5; 12 deep


34 Brueninghaus Hydromatik

Mounting of pilot valve for clockwise direction of rotation

σ

A 20

Before finalising your design please request a certified drawing. Subject to revision. Variable Displacement Pump A10VO, Series 31 Unit dimensions FHD Service ports at rear; Models 61N00 and 11 N00 On request Unit dimensions FHD Service ports on sides; Models 62 and 12 Sizes 28 to 100 A 1 0 Model 62 A 11 Model 62 A 16 Mounting of pilot Model 12 A17 Model 12 A12 Setting screw for press. control zero stroke pressure valve for anti-clockwise direction A<u>19</u> В of rotation Ħ A14 A 18 S Mst A8 Size 140

A20

FE1 Electronic flow control

The FE1 control is used for the electro-hydraulic swivel angle control of the A10VO variable displacement pump. The FE1 model pump is suitable for use with analogue amplifier

card VT 5041. The amplifier card is to be ordered separately.

For further information see RE 30022.

Control data

Hysteresis	< 1% of $V_{g max}$
Repetitive accuracy	< 1%
Pilot oil consumption	max. approx. 1 L/min

Flow loss at Q_{max} see pages 8 and 9.

Components

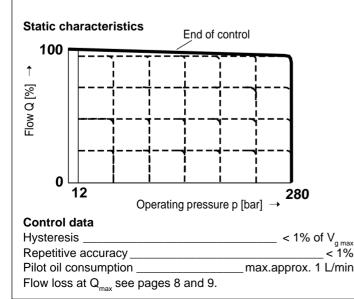
- 1 A10VO with hydraulic control device
- 1.1 Proportional valve STW 0063

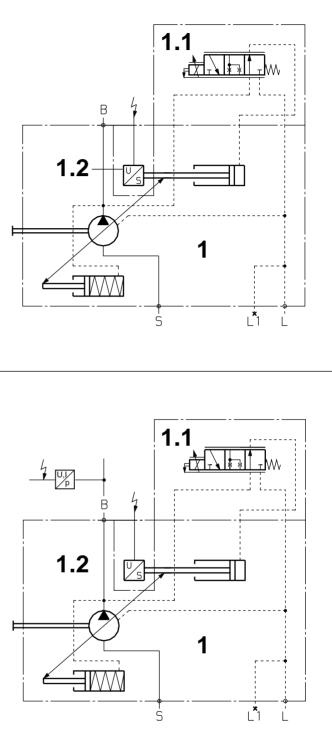
1.2 Inductive positional transducer IW9-03-01

control electronics (order separately in accordance with RE 30022).

Ports	
В	Pressure port
S	Suction port
L, L1	Case drain ports (L1 sealed)

DFE1 Pressure and flow control


Pressure and flow control of the pump are carried out by an electrically controlled proportional valve. Flow control is by means of the variable pump swivel angle, any variation in drive speed – e.g. caused by the diesel motor – is not adjusted. Pump pressure and pump position are registered by means of a pressure sensor and inductive positional transducer to the relevant amplifier card.


The DFE1 model pump is suitable for use with analogue amplifier card VT 5041.

Both amplifier card and pressure sensor are to be ordered separately.

For reasons of safety a pressure relief valve should be mounted in addition to the pump pressure control. This ensures that the maximum permissible operating pressure is not exceeded.

For further information and application examples see RE 30022 and RE 98090.

Ports B

S

	Pressure port
	Suction port
L1	Case drain ports (L1 sealed)

L, L1

Components

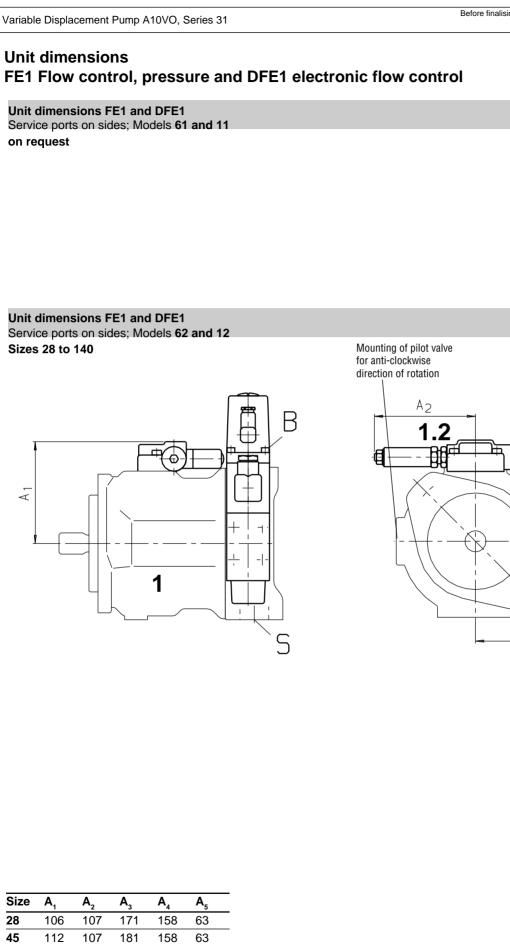
1 A10VO with hydraulic control device

1.1 Proportional valve STW 0063

1.2 Inductive positional transducer IW9–03–01

Pressure sensor and control electronics VT 5041-2X are separate components (to be ordered separately in accordance with RE 30022).

Mounting of pilot valve for clockwise direction of


A

ЧЛ

rotation

Aз

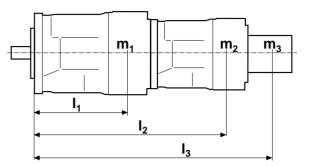
1.1

Through drive

Axial piston unit A10VO can be supplied with a through drive, as shown in the ordering code on page 3.

The type of through drive is determined by codes (K01–K17). If the combination pump is not mounted in the factory, the simple type code is sufficient.

Included in this case are:


coupling sleeve, fixing screws, seals and if necessary a sandwich flange.

Combination pumps

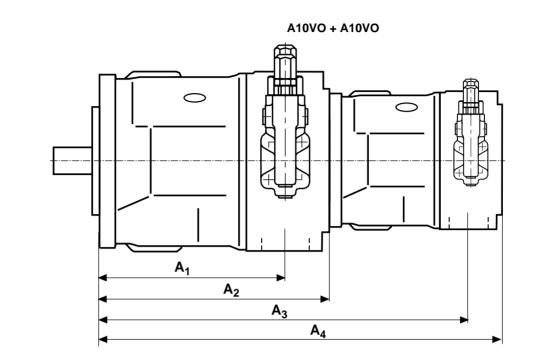
By mounting combination pumps circuits independent of each other are available for use.

- If the combination pump consists of **2 A10VO** pumps and if these are to be **delivered ready assembled**, then the two type codes are to be combined with a "+". Ordering example: A10VO 71 DR/31 R–PSC62K02 + A10VO 28 DR/31 R–PSC62N00
- 2. If a gear pump or radial piston pump is to be mounted in the factory as a second pump, please refer to RE 90139 (in preparation). It contains a list of the various pump combinations together with the type code of the first pump.

Permissible moment of inertia

m₁, m₂[kg] Mass of pump

$$l_1, l_2$$
 [mm] Distance between centres of gravity

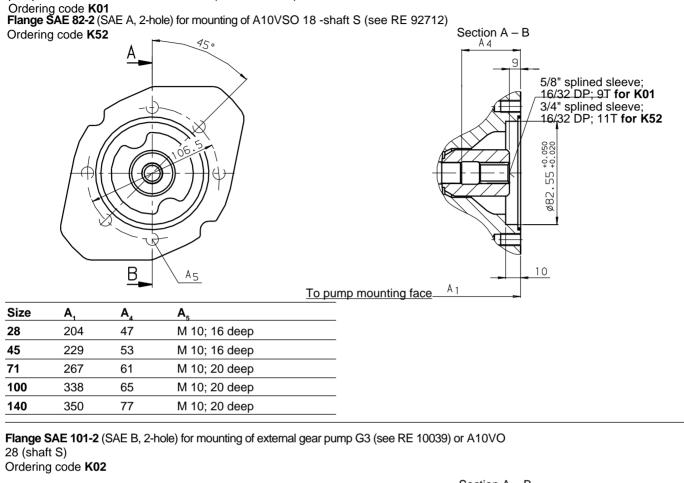

$$M_{m} = (m_{1} \bullet l_{1} + m_{2} \bullet l_{2} + m_{3} \bullet l_{3}) \bullet \frac{1}{102}$$
 [Nm]

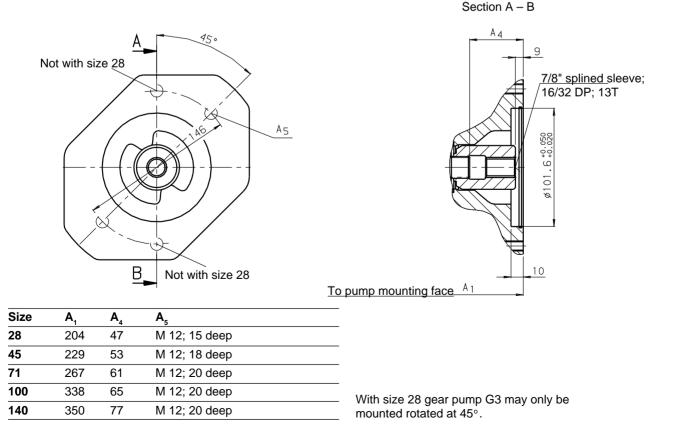
Size			28	45	71	100	140
Perm. moment of inertia	M _m	Nm	88	137	216	300	450
Mass	m ₁	kg	15	21	33	45	60
Dist. betw. centr. of gravity	I ₁	mm	110	130	150	160	160

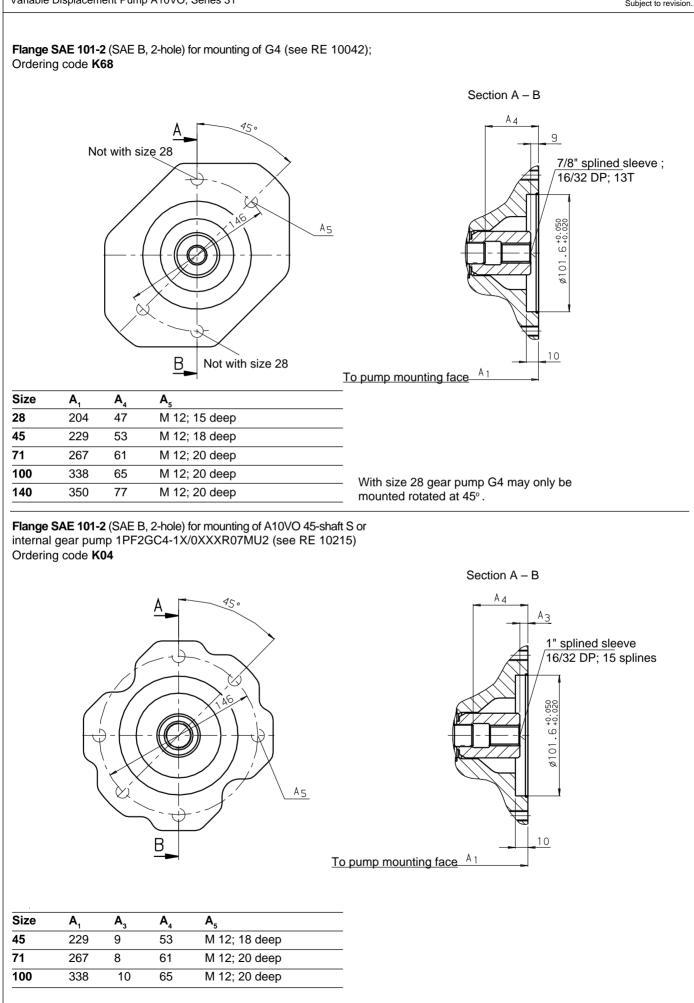
Permissible through drive torque

1	M _{total}		2	M _{tota}	1	ĴĹ		
	M _{D1}					M _{D1}	I	M _{D2}
S	ize			28	45	71	100	140
M	lax. perm. total through dr	rive torq	ue at	shaft '	"S" pu	ımp 1		
(F	Pump 1 + Pump 2)	M _{total max}	Nm	180	300	500	890	1246
1	Perm. thru, drive tor.	$M_{\rm D1max}$	Nm	125	200	316	445	623
1		M_{D2max}	Nm	55	100	184	445	623
2	Perm. thru, drive tor.	${\sf M}_{{\sf D}1{\sf max}}$	Nm	55	100	184	445	623
2		M _{D2max}	Nm	125	200	316	445	623
Si	ze			28	45	71	100	140
Μ	ax. perm. total through dr	ive torqu	ue at	shaft "	' R" pu	mp 1		
(P	Pump 1 + Pump 2)	$M_{_{\text{total max}}}$	Nm	223	400	632	-	-
1	Perm. thru. drive tor.	M_{D1max}	Nm	125	200	316	-	-
1		M_{D2max}	Nm	98	200	316	-	-
2	Perm. thru. drive tor.	M _{D1max}	Nm	98	200	316	-	-
_		M _{D2max}	Nm	125	200	316	-	_

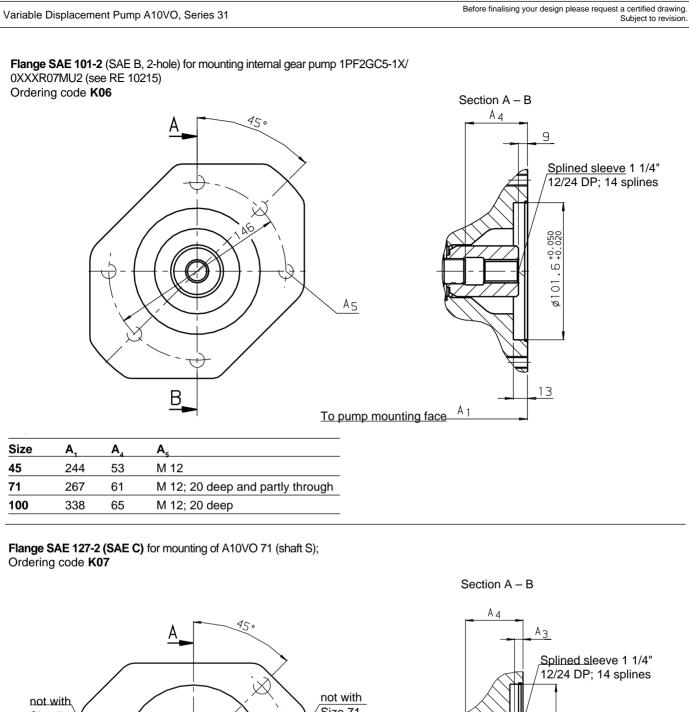
Unit dimensions of the combination pump

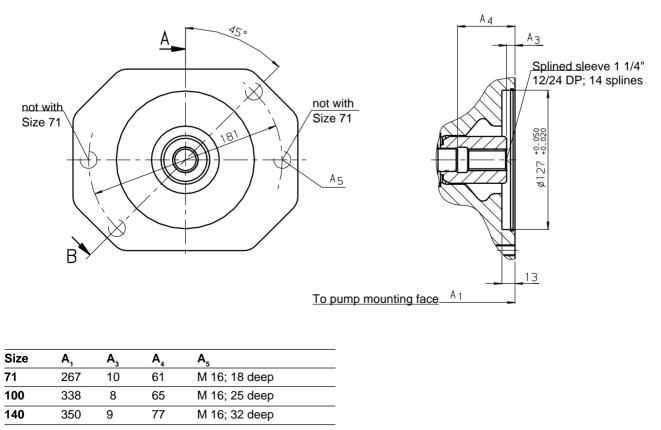


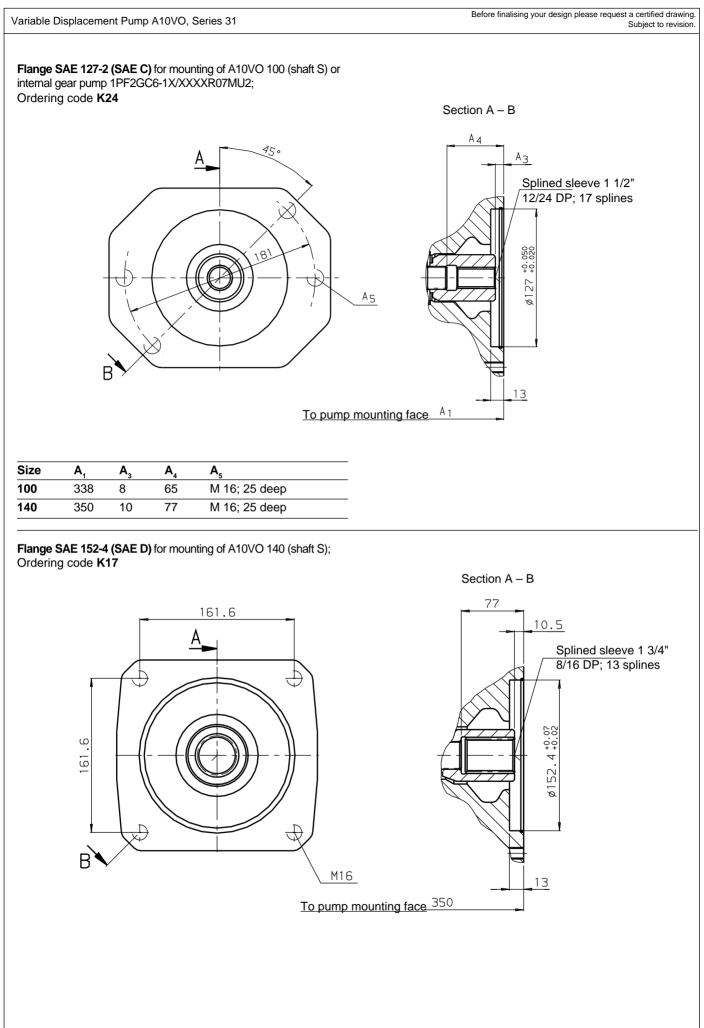

Pump 1		A10V	0 28			A10VO 45			A10V0 71				A10VO 100				A10VO 140			
Pump 2	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A_3	A_4	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A ₃	A ₄
A10VSO 18	165	204	349	399	184	229	374	424	217	267	412	462	275	338	483	533	275	350	495	545
A10VO 28	165	204	369	398	184	229	394	423	217	267	432	461	275	338	503	532	275	350	515	544
A10VO 45	-	-	-	-	184	229	413	448	217	267	451	486	275	338	522	557	275	350	534	569
A10VO 71	-	-	-	-	-	-	-	-	217	267	484	524	275	338	555	595	275	350	567	607
A10VO 100	-	-	-	-	-	-	-	-	-	-	-	-	275	356	631	673	275	368	643	685
A10VO 140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	275	368	643	685


Dimensions of through drives

Variable Displacement Pump A10VO, Series 31


Flange SAE 82-2 (SAE A, 2-hole) for mounting of external gear pump G2 (see RE 10030) or internal gear pump 1 PF2GC2/3-1X/XXXR07MU2 (see RE 10215)





Brueninghaus Hydromatik 41

be	part no.	type	part no.
0VO28DFR/31L-PSC62N00	940787	A10VO71DFR/31L-PSC62N00	946188
0VO28DFR/31R-PSC62K01	908655	A10VO71DFR/31R-PSC62N00	939120
VO28DFR/31R-PSC62N00	907402	A10VO 71DFR1/31L-PSC62K02	947870
/O28DFR1/31L-PSC62K01	922947	A10VO71DFR1/31R-PSC61N00	945653
VO28DFR1/31R-PSC61N00	911737	A10VO71DFR1/31R-PSC62N00	941657
O28DFR1/31R-PSC62N00	942696		
		A10VO100DFR/31R-PSC62N00	906900
/O45DFR/31R-PSC62K01	907404	A10VO100DFR1/31R-PSC61N00	940560
/O45DFR/31R-PSC62N00	943655		
/O45DFR1/31L-PSC62K01	916472		
VO45DFR1/31L-PSC62N00	909288		
/O45DFR1/31R-PSC61N00	943343		
045DFR1/31R-PSC62K01	916931		
045DFR1/31R-PSC62K02	920557		
O45DFR1/31R-PSC62N00	910181		

See RDE 90132.

Brueninghaus Hydromatik GmbH, Werk Horb, An den Kelterwiesen 14, D-72160 Horb, Tel. (07451) 920, Telex 765 321, Telefax (07451) 8221